|
| static bool | box_box_intersection (const box_t &box1, const box_t &box2) |
| | returns true if the given boxes intersect
|
| |
| static bool | box_contains_point (const box_t &box, const vector_t &point) |
| |
| static vector_t | box_diagonal (const box_t &box) |
| |
| static void | calculate_bounding_box (box_t &boxOut, const elem_t &e, const common_data_t &commonData) |
| |
| static void | calculate_center (vector_t ¢erOut, const elem_t &e, const common_data_t &commonData) |
| |
| static bool | contains_point (const elem_t &e, const vector_t &point, const common_data_t &commonData) |
| |
| static void | grow_box (box_t &boxOut, const box_t &box, const vector_t &offset) |
| | adds the given offset to box.max and subtracts it from box.min
|
| |
| static void | merge_boxes (box_t &boxOut, const box_t &box1, const box_t &box2) |
| | returns the smallest box that contains both box1 and box2
|
| |
| static void | split_box (box_t *boxesOut, const box_t &box, const vector_t &splitPoint) |
| | splits the given box into (2^tree_dim sub-boxes).
|
| |
template<int tree_dim, int world_dim, class elem_t, class common_data_t>
struct ug::ntree_traits< tree_dim, world_dim, elem_t, common_data_t >
The following methods have to be provided for the given vector-type:
void VecSet(vector_t &vInOut, typename vector_t::value_type s)
Set each vector component to scalar (componentwise)
Definition math_vector_functions_common_impl.hpp:539
void VecAdd(vector_t &vOut, const vector_t &v1, const vector_t &v2)
adds two MathVector<N>s and stores the result in a third one
Definition math_vector_functions_common_impl.hpp:185
void VecScale(vector_t &vOut, const vector_t &v, typename vector_t::value_type s)
scales a MathVector<N>
Definition math_vector_functions_common_impl.hpp:252
int real_t
Definition ntree.h:50
int vector_t
Definition ntree.h:51
template<int tree_dim, int world_dim, class elem_t , class common_data_t >
splits the given box into (2^tree_dim sub-boxes).
The split should be performed so that the given split-point is the only common point of all boxes. The union of all boxes in boxesOut has to overlap the given input-box.