ug4
gauss_tensor_prod.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013-2015: G-CSC, Goethe University Frankfurt
3  * Authors: Lisa Grau, Andreas Vogel
4  *
5  * This file is part of UG4.
6  *
7  * UG4 is free software: you can redistribute it and/or modify it under the
8  * terms of the GNU Lesser General Public License version 3 (as published by the
9  * Free Software Foundation) with the following additional attribution
10  * requirements (according to LGPL/GPL v3 §7):
11  *
12  * (1) The following notice must be displayed in the Appropriate Legal Notices
13  * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
14  *
15  * (2) The following notice must be displayed at a prominent place in the
16  * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
17  *
18  * (3) The following bibliography is recommended for citation and must be
19  * preserved in all covered files:
20  * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
21  * parallel geometric multigrid solver on hierarchically distributed grids.
22  * Computing and visualization in science 16, 4 (2013), 151-164"
23  * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
24  * flexible software system for simulating pde based models on high performance
25  * computers. Computing and visualization in science 16, 4 (2013), 165-179"
26  *
27  * This program is distributed in the hope that it will be useful,
28  * but WITHOUT ANY WARRANTY; without even the implied warranty of
29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30  * GNU Lesser General Public License for more details.
31  */
32 
33 #ifndef __H__UG__LIB_DISC__QUADRATURE__GAUSS_TENSOR_PROD__
34 #define __H__UG__LIB_DISC__QUADRATURE__GAUSS_TENSOR_PROD__
35 
36 /*
37  * In this file, quadrature rules for arbitray order for elements with dim > 1
38  * are implemented. The basic idea relies on a transformation of the considered
39  * domain to the unit cube [0,1]^d and then using Gauss quadratures to carry out
40  * the integrals. Note, that on some elements the transformation introduces
41  * jacobian determinants of type (1-x)^{\alpha}(1+x)^{\beta}. In order to
42  * integrate those, the gauss-jacobi quadratures are used.
43  */
44 
45 #include "../quadrature.h"
46 
47 namespace ug
48 {
49 
55 
56  public:
59 
62 };
63 
69 
70  public:
73 
76 };
77 
83 
84  public:
87 
90 };
91 
97 
98  public:
101 
104 };
105 
111 
112  public:
114  GaussQuadraturePrism(size_t order);
115 
118 };
119 
129 
130  public:
133 
136 };
137 
146 
147  public:
150 
153 };
154 
155 } // namespace ug
156 
157 #endif /* __H__UG__LIB_DISC__QUADRATURE__GAUSS_TENSOR_PROD__ */
Definition: gauss_tensor_prod.h:82
GaussQuadratureHexahedron(size_t order)
constructor
Definition: gauss_tensor_prod.cpp:99
~GaussQuadratureHexahedron()
destructor
Definition: gauss_tensor_prod.cpp:123
Definition: gauss_tensor_prod.h:145
~GaussQuadratureOctahedron()
destructor
Definition: gauss_tensor_prod.cpp:332
GaussQuadratureOctahedron(size_t order)
constructor
Definition: gauss_tensor_prod.cpp:240
Definition: gauss_tensor_prod.h:110
~GaussQuadraturePrism()
destructor
Definition: gauss_tensor_prod.cpp:186
GaussQuadraturePrism(size_t order)
constructor
Definition: gauss_tensor_prod.cpp:161
Definition: gauss_tensor_prod.h:128
GaussQuadraturePyramid(size_t order)
constructor
Definition: gauss_tensor_prod.cpp:192
~GaussQuadraturePyramid()
destructor
Definition: gauss_tensor_prod.cpp:234
Definition: gauss_tensor_prod.h:68
~GaussQuadratureQuadrilateral()
destructor
Definition: gauss_tensor_prod.cpp:93
GaussQuadratureQuadrilateral(size_t order)
constructor
Definition: gauss_tensor_prod.cpp:72
Definition: gauss_tensor_prod.h:96
~GaussQuadratureTetrahedron()
destructor
Definition: gauss_tensor_prod.cpp:155
GaussQuadratureTetrahedron(size_t order)
constructor
Definition: gauss_tensor_prod.cpp:129
Definition: gauss_tensor_prod.h:54
GaussQuadratureTriangle(size_t order)
constructor
Definition: gauss_tensor_prod.cpp:44
~GaussQuadratureTriangle()
destructor
Definition: gauss_tensor_prod.cpp:66
provides quadrature rule for a Reference Dimension
Definition: quadrature.h:70
size_t order() const
returns the order
Definition: quadrature.h:115
the ug namespace