ug4
Loading...
Searching...
No Matches
matrix_diagonal.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2014-2015: G-CSC, Goethe University Frankfurt
3 * Author: Martin Rupp
4 *
5 * This file is part of UG4.
6 *
7 * UG4 is free software: you can redistribute it and/or modify it under the
8 * terms of the GNU Lesser General Public License version 3 (as published by the
9 * Free Software Foundation) with the following additional attribution
10 * requirements (according to LGPL/GPL v3 §7):
11 *
12 * (1) The following notice must be displayed in the Appropriate Legal Notices
13 * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
14 *
15 * (2) The following notice must be displayed at a prominent place in the
16 * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
17 *
18 * (3) The following bibliography is recommended for citation and must be
19 * preserved in all covered files:
20 * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
21 * parallel geometric multigrid solver on hierarchically distributed grids.
22 * Computing and visualization in science 16, 4 (2013), 151-164"
23 * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
24 * flexible software system for simulating pde based models on high performance
25 * computers. Computing and visualization in science 16, 4 (2013), 165-179"
26 *
27 * This program is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU Lesser General Public License for more details.
31 */
32
33#ifndef MATRIX_DIAGONAL_H_
34#define MATRIX_DIAGONAL_H_
35
37
41namespace ug{
42template <typename M, typename X, typename Y = X>
43class MatrixDiagonal : public virtual ILinearOperator<X,Y>,
44 public M
45{
46 public:
47 // Domain space
49
50 // Range space
52
53 // Matrix type
54 typedef M matrix_type;
56
58
59 public:
63
64 // Init Operator J(u)
65 virtual void init(const X& u)
66 {
67 m_mo->init(u);
68 }
69
70 // Init Operator L
71 virtual void init() { m_mo->init(); }
72
73 // Apply Operator f = L*u (e.g. d = J(u)*c in iterative scheme)
74 virtual void apply(Y& f, const X& u)
75 {
76 matrix_type &A = m_mo->get_matrix();
77 for(size_t i=0; i<A.num_rows(); i++)
78 f[i] = A(i,i)*u[i];
79 }
80
81 // Apply Operator, i.e. f = f - L*u;
82 virtual void apply_sub(Y& f, const X& u)
83 {
84 matrix_type &A = m_mo->get_matrix();
85 for(size_t i=0; i<A.num_rows(); i++)
86 f[i] -= A(i,i)*u[i];
87 }
88};
89
90
94template <typename M, typename X, typename Y = X>
95class MatrixDiagonalInverse : public virtual ILinearOperator<X,Y>,
96 public M
97{
98 public:
99 // Domain space
101
102 // Range space
104
105 // Matrix type
106 typedef M matrix_type;
108
110
111 public:
115
116 // Init Operator J(u)
117 virtual void init(const X& u)
118 {
119 m_mo->init(u);
120 }
121
122 // Init Operator L
123 virtual void init() { m_mo->init(); }
124
125 // Apply Operator f = L*u (e.g. d = J(u)*c in iterative scheme)
126 virtual void apply(Y& f, const X& u)
127 {
128 matrix_type &A = m_mo->get_matrix();
129 for(size_t i=0; i<A.num_rows(); i++)
130 InverseMatMult(f[i], 1.0, A(i,i), u[i]);
131 }
132
133 // Apply Operator, i.e. f = f - L*u;
134 virtual void apply_sub(Y& f, const X& u)
135 {
136 matrix_type &A = m_mo->get_matrix();
137 typename X::value_type t;
138 for(size_t i=0; i<A.num_rows(); i++)
139 {
140 InverseMatMult(t, 1.0, A(i,i), u[i]);
141 f[i] -= t;
142 }
143
144 }
145};
146
147}
148#endif /* MATRIX_DIAGONAL_H_ */
Definition smart_pointer.h:108
describes a linear mapping X->Y
Definition linear_operator.h:80
Definition matrix_diagonal.h:45
Y codomain_function_type
Definition matrix_diagonal.h:51
virtual void init(const X &u)
init operator depending on a function u
Definition matrix_diagonal.h:65
SmartPtr< mo_type > m_mo
Definition matrix_diagonal.h:57
MatrixOperator< M, X, Y > mo_type
Definition matrix_diagonal.h:55
X domain_function_type
Definition matrix_diagonal.h:48
M matrix_type
Definition matrix_diagonal.h:54
virtual void apply(Y &f, const X &u)
Definition matrix_diagonal.h:74
MatrixDiagonal(SmartPtr< mo_type > mo)
Definition matrix_diagonal.h:60
virtual void init()
init operator
Definition matrix_diagonal.h:71
virtual void apply_sub(Y &f, const X &u)
Definition matrix_diagonal.h:82
Definition matrix_diagonal.h:97
Y codomain_function_type
Definition matrix_diagonal.h:103
virtual void apply(Y &f, const X &u)
Definition matrix_diagonal.h:126
MatrixDiagonalInverse(SmartPtr< mo_type > mo)
Definition matrix_diagonal.h:112
virtual void apply_sub(Y &f, const X &u)
Definition matrix_diagonal.h:134
virtual void init(const X &u)
init operator depending on a function u
Definition matrix_diagonal.h:117
SmartPtr< mo_type > m_mo
Definition matrix_diagonal.h:109
virtual void init()
init operator
Definition matrix_diagonal.h:123
M matrix_type
Definition matrix_diagonal.h:106
MatrixOperator< M, X, Y > mo_type
Definition matrix_diagonal.h:107
X domain_function_type
Definition matrix_diagonal.h:100
Definition matrix_operator.h:49
the ug namespace
bool InverseMatMult(number &dest, const double &beta, const TMat &mat, const TVec &vec)
you can implement this function with GetInverse and MatMult