ug4
obstacle_in_normal_dir_impl.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013-2015: G-CSC, Goethe University Frankfurt
3  * Author: Raphael Prohl
4  *
5  * This file is part of UG4.
6  *
7  * UG4 is free software: you can redistribute it and/or modify it under the
8  * terms of the GNU Lesser General Public License version 3 (as published by the
9  * Free Software Foundation) with the following additional attribution
10  * requirements (according to LGPL/GPL v3 §7):
11  *
12  * (1) The following notice must be displayed in the Appropriate Legal Notices
13  * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
14  *
15  * (2) The following notice must be displayed at a prominent place in the
16  * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
17  *
18  * (3) The following bibliography is recommended for citation and must be
19  * preserved in all covered files:
20  * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
21  * parallel geometric multigrid solver on hierarchically distributed grids.
22  * Computing and visualization in science 16, 4 (2013), 151-164"
23  * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
24  * flexible software system for simulating pde based models on high performance
25  * computers. Computing and visualization in science 16, 4 (2013), 165-179"
26  *
27  * This program is distributed in the hope that it will be useful,
28  * but WITHOUT ANY WARRANTY; without even the implied warranty of
29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30  * GNU Lesser General Public License for more details.
31  */
32 
33 #ifndef __H__UG__LIB_ALGEBRA__OPERATOR__PRECONDITIONER__PROJECTED_GAUSS_SEIDEL__OBSTACLE_IN_NORMAL_DIR_IMPL__
34 #define __H__UG__LIB_ALGEBRA__OPERATOR__PRECONDITIONER__PROJECTED_GAUSS_SEIDEL__OBSTACLE_IN_NORMAL_DIR_IMPL__
35 
36 #include "obstacle_in_normal_dir.h"
37 
38 #include "lib_disc/domain_util.h"
41 
42 namespace ug{
43 
44 template <typename TDomain, typename TAlgebra>
45 void
47 {
48  // for debugging
49  MathVector<dim> normal;
50  normal[0] = 2.0;
51  if (dim > 1) normal[1] = 1.5;
52  if (dim > 2) normal[2] = -3.0;
53 
54  MathVector<dim> transformedONB[dim];
55  transform_eulerian_coord_sys(transformedONB, normal);
56 
57 }
58 
59 template <typename TDomain, typename TAlgebra>
60 void
62  const MathVector<dim>& firstTransformedBaseVec)
63 {
64  // create first unit eulerian base vector
65  MathVector<dim> unityX;
66  unityX[0] = 1.0;
67  if (dim > 1) unityX[1] = 0.0;
68  if (dim > 2) unityX[2] = 0.0;
69 
70  // normalize first base vector of the transformed system
71  MathVector<dim> normalizedFirstBaseVec;
72  const number normOfFirstBaseVec = VecLength(firstTransformedBaseVec);
73  VecScale(normalizedFirstBaseVec, firstTransformedBaseVec, 1.0/normOfFirstBaseVec);
74 
75  // compute vector, which is orthogonal to the householder hypersphere
76  MathVector<dim> orthoVec;
77  VecScaleAdd(orthoVec, 0.5, unityX, -0.5, normalizedFirstBaseVec);
78 
79  // compute householder matrix
81  MatHouseholder(hMat, orthoVec);
82 
83  // get and store transformed orthonormal base vectors
84  MathVector<dim> transBaseVec;
85  for(size_t i = 0; i < (size_t)dim; ++i)
86  {
87  for(size_t j = 0; j < (size_t)dim; ++j){
88  transBaseVec[j] = hMat(i,j);
89  }
90  transformedONB[i] = transBaseVec;
91  }
92 }
93 
94 template <int dim> struct face_type_traits
95 {
96  typedef void face_type0;
97  typedef void face_type1;
98  typedef void DimFEGeo;
99 };
100 
101 template <> struct face_type_traits<1>
102 {
106 };
107 
108 template <> struct face_type_traits<2>
109 {
113 };
114 
115 template <> struct face_type_traits<3>
116 {
120 };
121 
122 template <typename TDomain, typename TAlgebra>
123 template <typename TElem, typename TIterator>
124 void
126 adjust_sol_and_cor_elem(TIterator iterBegin,
127  TIterator iterEnd, value_type& sol_i, value_type& c_i, bool& dofIsActive,
128  const DoFIndex& dof)
129 {
130  typedef typename face_type_traits<dim>::face_type0 face_type0;
131  typedef typename face_type_traits<dim>::face_type1 face_type1;
132 
133  // storage for corner coordinates
134  vector<MathVector<dim> > vCorner;
135  vector<MathVector<dim> > vCoPos;
136 
137  // outer normal vector
138  MathVector<dim> normal;
139 
140  for(TIterator iter = iterBegin; iter != iterEnd; ++iter)
141  {
142  TElem* elem = *iter;
143 
144  // reference object type
145  ReferenceObjectID roid = elem->reference_object_id();
146 
147  const DimReferenceElement<dim-1>& rRefElem
149 
150  // get corners of element
151  CollectCornerCoordinates(vCorner, *elem, *m_spDomain);
152 
153  // here the ordering of the corners in the reference element is exploited
154  // in order to compute the outer normal later on
155  int nCorner = (int)vCorner.size();
156  for (int i = 0; i < nCorner; ++i)
157  vCoPos.push_back(vCorner[rRefElem.id(dim-1, 0, 0, i)]);
158 
159  if ((int)vCorner.size() == dim)
160  ElementNormal<face_type0, dim>(normal, &vCoPos[0]);
161  else
162  ElementNormal<face_type1, dim>(normal, &vCoPos[0]);
163 
164  /*for (int i = 0; i < (int)vCorner.size(); ++i)
165  UG_LOG("coPos: " << coPos[i] << "\n");
166  UG_LOG("normal: " << normal << "\n");
167 
168  //const number normOfNormal = VecLength(normal);
169  //const value_type tmpVSol = sol_i + c_i;
170  //const number uTimesNormal = tmpSol / normOfNormal;
171  UG_LOG("\n");*/
172  }
173 
174  const size_t comp = dof[1];
175 
176  // tmpSol := u_{s-1/2} = u_{s-1} + c
177  const number tmpSol = BlockRef(sol_i, comp) + BlockRef(c_i, comp);
178 
179  // get obstacle value corresponding to the dof
180  const number obsVal = m_mObstacleValues[dof];
181 
182  // check, if dof is active (tmpSol >= obsVal)
183  // TODO: check if u * n > g, i.e. tmpSol * n > g!
184  if (!(tmpSol < obsVal))
185  {
186  // is active DoF
187  m_vActiveDofs.push_back(dof);
188 
189  // adjust correction & set solution to obstacle-value
190  BlockRef(c_i, comp) = obsVal - BlockRef(sol_i, comp);
191  BlockRef(sol_i, comp) = obsVal;
192  dofIsActive = true;
193  }
194 }
195 
196 template <typename TDomain, typename TAlgebra>
197 void
199 adjust_sol_and_cor(value_type& sol_i, value_type& c_i, bool& dofIsActive,
200  const DoFIndex& dof)
201 {
202  // loop over all obstacle subsets
203  for (vector<int>::iterator obsSI = m_vObsSubsets.begin();
204  obsSI != m_vObsSubsets.end(); ++obsSI)
205  {
206  const int si = *obsSI;
207  UG_LOG("si: " <<si<<"\n");
208  const int subsetDim = DimensionOfSubset(*m_spDD->subset_handler(), si);
209 
210  switch(subsetDim)
211  {
212  case 0:
213  break;
214  case 1:
215  adjust_sol_and_cor_elem<RegularEdge>
216  (m_spDD->template begin<RegularEdge>(si), m_spDD->template end<RegularEdge>(si),
217  sol_i, c_i, dofIsActive, dof);
218  break;
219  case 2:
220  adjust_sol_and_cor_elem<Triangle>
221  (m_spDD->template begin<Triangle>(si), m_spDD->template end<Triangle>(si),
222  sol_i, c_i, dofIsActive, dof);
223  adjust_sol_and_cor_elem<Quadrilateral>
224  (m_spDD->template begin<Quadrilateral>(si), m_spDD->template end<Quadrilateral>(si),
225  sol_i, c_i, dofIsActive, dof);
226  break;
227  default:
228  UG_THROW("ObstacleInNormalDir::adjust_sol_and_cor:"
229  "SubsetDimension "<< subsetDim <<" (subset="<< si <<") not supported.");
230  }
231  }
232 }
233 
234 template <typename TDomain, typename TAlgebra>
235 void
238 {
239  for (vector<MultiIndex<2> >::iterator itActiveInd = m_vActiveDofs.begin();
240  itActiveInd < m_vActiveDofs.end(); ++itActiveInd)
241  {
242  // check, if Ax >= b. For that case the new defect is set to zero,
243  // since all equations/constraints are fulfilled
244  number defect = BlockRef(d[(*itActiveInd)[0]], (*itActiveInd)[1]);
245  if (defect > 0.0)
246  BlockRef(d[(*itActiveInd)[0]], (*itActiveInd)[1]) = 0.0;
247  }
248 }
249 
250 template <typename TDomain, typename TAlgebra>
251 void
254 {}
255 
256 } // end namespace ug
257 
258 #endif /* __H__UG__LIB_ALGEBRA__OPERATOR__PRECONDITIONER__PROJECTED_GAUSS_SEIDEL__OBSTACLE_IN_NORMAL_DIR_IMPL__ */
259 
Definition: fe_geom.h:183
dimension dependent base class for reference elements
Definition: reference_element.h:183
vector_type::value_type value_type
Value type.
Definition: obstacle_constraint_interface.h:88
algebra_type::vector_type vector_type
Vector type.
Definition: obstacle_constraint_interface.h:85
Definition: multi_index.h:50
void adjust_sol_and_cor(value_type &sol_i, value_type &c_i, bool &dofIsActive, const DoFIndex &dof)
projects the i-th index of the solution onto the admissible set and adjusts the correction
Definition: obstacle_in_normal_dir_impl.h:199
void transform_eulerian_coord_sys(MathVector< dim > transformedONB[], const MathVector< dim > &firstTransformedBaseVec)
Definition: obstacle_in_normal_dir_impl.h:61
void adjust_defect_to_constraint(vector_type &d)
the defect needs to be adjusted for the active indices (those indices, which are in contact)
Definition: obstacle_in_normal_dir_impl.h:237
void preprocess()
preprocess is useful to attach the normals for every obstacle DoF
Definition: obstacle_in_normal_dir_impl.h:46
void restrict_obs_values()
restricts the obstacle values to a coarser grid in a multigrid hierarchy
Definition: obstacle_in_normal_dir_impl.h:253
void adjust_sol_and_cor_elem(TIterator iterBegin, TIterator iterEnd, value_type &sol_i, value_type &c_i, bool &dofIsAdmissible, const DoFIndex &dof)
Definition: obstacle_in_normal_dir_impl.h:126
Definition: reference_element.h:345
static const DimReferenceElement< dim > & get(ReferenceObjectID roid)
returns a dimension dependent Reference Element
Definition: reference_element.h:280
Definition: reference_element.h:445
Definition: reference_element.h:394
Definition: reference_element.h:303
void CollectCornerCoordinates(std::vector< typename TAAPos::ValueType > &vCornerCoordsOut, const TElem &elem, const TAAPos &aaPos, bool clearContainer=true)
returns the corner coordinates of a geometric object
Definition: domain_util_impl.h:75
void MatHouseholder(matrix_t &mOut, const vector_t &orthoVec)
Definition: math_matrix_functions_common_impl.hpp:926
static const int dim
#define UG_THROW(msg)
Definition: error.h:57
#define UG_LOG(msg)
Definition: log.h:367
double number
Definition: types.h:124
vector_t::value_type VecLength(const vector_t &v)
returns the length of v. Slower than VecLengthSq.
Definition: math_vector_functions_common_impl.hpp:341
void VecScaleAdd(vector_t &vOut, typename vector_t::value_type s1, const vector_t &v1, typename vector_t::value_type s2, const vector_t &v2)
Scales two Vectors, adds them and returns the sum in a third vector.
Definition: math_vector_functions_common_impl.hpp:265
void VecScale(vector_t &vOut, const vector_t &v, typename vector_t::value_type s)
scales a MathVector<N>
Definition: math_vector_functions_common_impl.hpp:252
the ug namespace
ReferenceObjectID
these ids are used to identify the shape of a geometric object.
Definition: grid_base_objects.h:74
double & BlockRef(T &vec, size_t i)
Definition: blocks.h:66
int DimensionOfSubset(const ISubsetHandler &sh, int si)
returns the current dimension of the subset
Definition: subset_dim_util.cpp:89
ReferenceVertex face_type1
Definition: obstacle_in_normal_dir_impl.h:104
ReferenceVertex face_type0
Definition: obstacle_in_normal_dir_impl.h:103
DimFEGeometry< 1, 1 > DimFEGeo
Definition: obstacle_in_normal_dir_impl.h:105
ReferenceEdge face_type0
Definition: obstacle_in_normal_dir_impl.h:110
ReferenceEdge face_type1
Definition: obstacle_in_normal_dir_impl.h:111
DimFEGeometry< 2, 1 > DimFEGeo
Definition: obstacle_in_normal_dir_impl.h:112
ReferenceTriangle face_type0
Definition: obstacle_in_normal_dir_impl.h:117
ReferenceQuadrilateral face_type1
Definition: obstacle_in_normal_dir_impl.h:118
DimFEGeometry< 3, 2 > DimFEGeo
Definition: obstacle_in_normal_dir_impl.h:119
Definition: active_set_impl.h:45
void face_type0
Definition: obstacle_in_normal_dir_impl.h:96
void face_type1
Definition: obstacle_in_normal_dir_impl.h:97
void DimFEGeo
Definition: obstacle_in_normal_dir_impl.h:98