Loading [MathJax]/extensions/tex2jax.js
ug4
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
octahedron_rules.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2014-2015: G-CSC, Goethe University Frankfurt
3 * Author: Martin Stepniewski
4 *
5 * This file is part of UG4.
6 *
7 * UG4 is free software: you can redistribute it and/or modify it under the
8 * terms of the GNU Lesser General Public License version 3 (as published by the
9 * Free Software Foundation) with the following additional attribution
10 * requirements (according to LGPL/GPL v3 §7):
11 *
12 * (1) The following notice must be displayed in the Appropriate Legal Notices
13 * of covered and combined works: "Based on UG4 (www.ug4.org/license)".
14 *
15 * (2) The following notice must be displayed at a prominent place in the
16 * terminal output of covered works: "Based on UG4 (www.ug4.org/license)".
17 *
18 * (3) The following bibliography is recommended for citation and must be
19 * preserved in all covered files:
20 * "Reiter, S., Vogel, A., Heppner, I., Rupp, M., and Wittum, G. A massively
21 * parallel geometric multigrid solver on hierarchically distributed grids.
22 * Computing and visualization in science 16, 4 (2013), 151-164"
23 * "Vogel, A., Reiter, S., Rupp, M., Nägel, A., and Wittum, G. UG4 -- a novel
24 * flexible software system for simulating pde based models on high performance
25 * computers. Computing and visualization in science 16, 4 (2013), 165-179"
26 *
27 * This program is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU Lesser General Public License for more details.
31 */
32
33#ifndef __H__UG__octahedron_rules__
34#define __H__UG__octahedron_rules__
35
36#include "common/math/ugmath.h"
37
38namespace ug{
39namespace oct_rules
40{
41
43// LOOKUP TABLES
44
45const int NUM_VERTICES = 6;
46const int NUM_EDGES = 12;
47const int NUM_FACES = 8;
48const int NUM_TRIS = 8;
49const int NUM_QUADS = 0;
50
51/* in case of regular refinement an octahedron is subdivided into 14 elements,
52 * 6 octahedrons and 8 tetrahedrons, resulting in 14 type-info plus
53 * 6*6 octahedral vertex plus 4*8 tetrahedral vertex indices,
54 * thus 82 MAX_NUM_INDS_OUT
55 */
56const int MAX_NUM_INDS_OUT = 82;//todo: this is just an estimate!
57
59const int EDGE_VRT_INDS[][2] = { {0, 1}, {0, 2}, {0, 3}, {0, 4},
60 {1, 2}, {2, 3}, {3, 4}, {4, 1},
61 {1, 5}, {2, 5}, {3, 5}, {4, 5}};
62
64const int FACE_VRT_INDS[][4] = { {0, 1, 2, -1}, {0, 2, 3, -1}, {0, 3, 4, -1}, {0, 4, 1, -1},
65 {1, 5, 2, -1}, {2, 5, 3, -1}, {3, 5, 4, -1}, {4, 5, 1, -1}};
66
68const int BOTTOM_VERTEX = 0;
69
71const int TOP_VERTEX = 5;
72
76const int OPPOSED_OBJECT[][NUM_VERTICES] = {{0, 5}, {0, 3}, {0, 4}, {0, 1}, {0, 2}, {0, 0}};
77
78
81// NOTE: The lists below are all generated automatically
82
84const int FACE_EDGE_INDS[8][4] = { {0, 4, 1, -1}, {1, 5, 2, -1}, {2, 6, 3, -1}, {3, 7, 0, -1},
85 {8, 9, 4, -1}, {9, 10, 5, -1}, {10, 11, 6, -1}, {11, 8, 7, -1}};
86
88const int FACE_CONTAINS_EDGE[][12] = { {1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
89 {0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0},
90 {0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0},
91 {1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0},
92 {0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0},
93 {0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0},
94 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1},
95 {0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1}};
96
98
101const int EDGE_FROM_VRTS[6][6] = { {-1, 0, 1, 2, 3, -1}, {0, -1, 4, -1, 7, 8}, {1, 4, -1, 5, -1, 9},
102 {2, -1, 5, -1, 6, 10}, {3, 7, -1, 6, -1, 11}, {-1, 8, 9, 10, 11, -1}};
103
105
108const int FACE_FROM_VRTS[6][6][6] = { {{-1, -1, -1, -1, -1, -1}, {-1, -1, 0, -1, 3, -1}, {-1, 0, -1, 1, -1, -1}, {-1, -1, 1, -1, 2, -1}, {-1, 3, -1, 2, -1, -1}, {-1, -1, -1, -1, -1, -1}},
109 {{-1, -1, 0, -1, 3, -1}, {-1, -1, -1, -1, -1, -1}, {0, -1, -1, -1, -1, 4}, {-1, -1, -1, -1, -1, -1}, {3, -1, -1, -1, -1, 7}, {-1, -1, 4, -1, 7, -1}},
110 {{-1, 0, -1, 1, -1, -1}, {0, -1, -1, -1, -1, 4}, {-1, -1, -1, -1, -1, -1}, {1, -1, -1, -1, -1, 5}, {-1, -1, -1, -1, -1, -1}, {-1, 4, -1, 5, -1, -1}},
111 {{-1, -1, 1, -1, 2, -1}, {-1, -1, -1, -1, -1, -1}, {1, -1, -1, -1, -1, 5}, {-1, -1, -1, -1, -1, -1}, {2, -1, -1, -1, -1, 6}, {-1, -1, 5, -1, 6, -1}},
112 {{-1, 3, -1, 2, -1, -1}, {3, -1, -1, -1, -1, 7}, {-1, -1, -1, -1, -1, -1}, {2, -1, -1, -1, -1, 6}, {-1, -1, -1, -1, -1, -1}, {-1, 7, -1, 6, -1, -1}},
113 {{-1, -1, -1, -1, -1, -1}, {-1, -1, 4, -1, 7, -1}, {-1, 4, -1, 5, -1, -1}, {-1, -1, 5, -1, 6, -1}, {-1, 7, -1, 6, -1, -1}, {-1, -1, -1, -1, -1, -1}}};
114
116const int FACE_FROM_EDGES[][12] = { {0, 0, -1, 3, 0, -1, -1, 3, -1, -1, -1, -1}, {0, 0, 1, -1, 0, 1, -1, -1, -1, -1, -1, -1},
117 {-1, 1, 1, 2, -1, 1, 2, -1, -1, -1, -1, -1}, {3, -1, 2, 2, -1, -1, 2, 3, -1, -1, -1, -1},
118 {0, 0, -1, -1, 0, -1, -1, -1, 4, 4, -1, -1}, {-1, 1, 1, -1, -1, 1, -1, -1, -1, 5, 5, -1},
119 {-1, -1, 2, 2, -1, -1, 2, -1, -1, -1, 6, 6}, {3, -1, -1, 3, -1, -1, -1, 3, 7, -1, -1, 7},
120 {-1, -1, -1, -1, 4, -1, -1, 7, 4, 4, -1, 7}, {-1, -1, -1, -1, 4, 5, -1, -1, 4, 4, 5, -1},
121 {-1, -1, -1, -1, -1, 5, 6, -1, -1, 5, 5, 6}, {-1, -1, -1, -1, -1, -1, 6, 7, 7, -1, 6, 6}};
122
123
126
170int Refine(int* newIndsOut, int* newEdgeVrts, bool& newCenterOut,
171 vector3* corners = NULL, bool* isSnapPoint = NULL);
172
173
175
187bool IsRegularRefRule(const int edgeMarks);
188
189}// end of namespace oct_rules
190}// end of namespace ug
191
192#endif
const int NUM_FACES
Definition octahedron_rules.h:47
const int EDGE_FROM_VRTS[6][6]
Associates the index of the connecting edge with each tuple of vertices.
Definition octahedron_rules.h:101
const int FACE_EDGE_INDS[8][4]
returns the j-th edge of the i-th face
Definition octahedron_rules.h:84
const int BOTTOM_VERTEX
the octhedrons bottom
Definition octahedron_rules.h:68
const int NUM_TRIS
Definition octahedron_rules.h:48
const int FACE_VRT_INDS[][4]
the local vertex indices of the given face
Definition octahedron_rules.h:64
const int NUM_VERTICES
Definition octahedron_rules.h:45
int Refine(int *newIndsOut, int *newEdgeVrts, bool &newCenterOut, vector3 *corners, bool *)
Definition octahedron_rules.cpp:56
const int FACE_CONTAINS_EDGE[][12]
tells whether the i-th face contains the j-th edge
Definition octahedron_rules.h:88
const int FACE_FROM_EDGES[][12]
given two edges, the table returns the face, which contains both (or -1)
Definition octahedron_rules.h:116
const int TOP_VERTEX
the octhedrons top
Definition octahedron_rules.h:71
bool IsRegularRefRule(const int edgeMarks)
returns true if the specified edgeMarks would lead to a regular refinement
Definition octahedron_rules.cpp:516
const int OPPOSED_OBJECT[][NUM_VERTICES]
Definition octahedron_rules.h:76
const int MAX_NUM_INDS_OUT
Definition octahedron_rules.h:56
const int NUM_QUADS
Definition octahedron_rules.h:49
const int FACE_FROM_VRTS[6][6][6]
Associates the index of the connecting face with each triple of vertices.
Definition octahedron_rules.h:108
const int EDGE_VRT_INDS[][2]
the local vertex indices of the given edge
Definition octahedron_rules.h:59
const int NUM_EDGES
Definition octahedron_rules.h:46
the ug namespace