ug4
ug::EquidistantLagrange1D Class Reference

#include <lagrange1d.h>

+ Inheritance diagram for ug::EquidistantLagrange1D:

Public Member Functions

 EquidistantLagrange1D (const size_t i, const size_t degree)
 
- Public Member Functions inherited from ug::Polynomial1D
size_t degree () const
 
Polynomial1D derivative () const
 returns the derivative of this polynomial as a polynomial More...
 
Polynomial1Doperator*= (const Polynomial1D &v)
 multiply by a polynomial More...
 
Polynomial1Doperator*= (number scale)
 multiply by a scalar More...
 
 Polynomial1D (const std::vector< number > &a)
 Constructor passing coefficients for the polynomial. More...
 
 Polynomial1D (size_t degree=0)
 Constructor producing zero polynomial of degree 'degree'. More...
 
number value (const number x) const
 evaluate the value of the polynom at x More...
 

Static Public Member Functions

static number position (const size_t i, const size_t degree)
 returns the position of the i'th interpolation point More...
 

Protected Member Functions

void compute_coeffs (const int i, const int p)
 computes the coefficients for passed interpolation points More...
 
- Protected Member Functions inherited from ug::Polynomial1D
void set_coefficients (const std::vector< number > &a)
 

Detailed Description

EquiDistant Lagrange Function

Constructor & Destructor Documentation

◆ EquidistantLagrange1D()

ug::EquidistantLagrange1D::EquidistantLagrange1D ( const size_t  i,
const size_t  degree 
)
inline

creates a lagrange polynomial with equidistant interpolation points

Parameters
[in]inumber of interpolation point, where polynom is 1
[in]degreedegree of polynom

References compute_coeffs(), ug::Polynomial1D::degree(), and UG_ASSERT.

Member Function Documentation

◆ compute_coeffs()

void ug::EquidistantLagrange1D::compute_coeffs ( const int  i,
const int  p 
)
inlineprotected

computes the coefficients for passed interpolation points

References p, and ug::Polynomial1D::set_coefficients().

Referenced by EquidistantLagrange1D().

◆ position()


The documentation for this class was generated from the following file: